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Abstract The concept of a universal T matrix, recently introduced by Fmnsdal and Galindo 
in the framework of quanhlm groups, is discussed here as a generalization of the exponential 
mapping, New examples dated to inhomogeneous quantum groups of physical interest are 
developed, the duality calculations are explicitly presented and it is found that in some cases 
the universal T matrix, as for Lie groups, is expressed in terms of usual expanenti& series. 

1. Introduction 

The relations of the quantum algebra Fun, (SU(2) )  generated by the elements a, b, c and 
d have the remarkable property of being preserved under matrix multiplication [I]. This 
means that if we define 

where (U’, b’. c‘, d’ ) and (a”. b“, c“, d“ ) are two mutually commuting sets of elements 
satisfying the relations of FUR, (SU(2)) ,  then the variables (a. b, c, d ) defined by 

also satisfy the same relations. 
multiplication A according to 

This property can he formalized by defining a co- 

A ( T )  = T& T (1) 

where 6 denotes matrix multiplication and tensor product of the C*-algebras of the non- 
commutative representative functions. [2]. For q = 1 the matrix A(T) ,  with elements in 
@’Fun (SU(2)) ,  gives rise to the ordinary group composition. The inverse matrix then 
defines a second operation on the elements (a, b. c, d ), namely the antipode 

S(T)  = T-1 . (2) 

The antipode and co-multiplication together with co-unit, unit and multiplication are 
collected into the Hopf algebra Fun, (SU(2)) .  

5 On leave from Departamento de FIsica Te6ica. Universidad Compluknse, 28040 Madrid. Spain. 
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1308 F Bonechi et a1 

These properties can be abstracted and generalized without referring to matrices. To 
show this, we consider the quantization U&) of the universal enveloping algebra of a Lie 
algebra g with product, coproduct and antipode defined by 

m ( x A  8 X B )  = f& xc 

where the sum over repeated indices is assumed and where X A  are the elements of a 
basis of U,($), as, for instance, the Poincar&Birkhoff-Witt basis. If g is a compact 
form of a semisimple Lie algebra, it is well known that the Tannaka theory establishes a 
duality between the universal enveloping algebra and the Hopf algebra of the representative 
functions. This kind of duality has also been studied at the quantum level [2] so that we 
can speak of a compact quantum group Fun, (G) satisfying the relations 

A(XA) = hiC x g  8 xc ~ ( X A )  = SA" X B  

" ( X C )  = f& X A  8 X B  A*@ @ x c )  = h i C x A  S*(xB)  = (s-'); x A  

where { x A }  is a basis of Fun, (G) such that ( x A ,  X g )  = 8;.  For non-compact Lie algebras 
the duality is more delicate and the functions vanishing at infinity must be determined [3]. 

In this scheme, independent of the representation, the object that takes the place of the 
matrix T ,  called the universal T matrix and denoted by the same letter, is given by summing 
the tensor products of all the corresponding elements of a pair of dual bases [4]: 

T = x A  @ X A  . 

The structure of T and the Hopf algebra operations naturally suggest two kinds of mappings, 
the first one using the multiplication of V,(g), 

T 6 T = (xA BX') BJE-(XA B x g )  (3) 

the other being obtained from the multiplication of Fun, (G), 

~6 T = A * ( x ~  82) @ ( X A  8 xg) . (4) 

It is straightforward to see that the duality relations yield the equalities 

m*(xA) 8 X A  = T ~ T  x A  8 A(x,) = T ~ T  (5) 

and 

s * ( X A )  8 XA = x A  8 S(x.4) = T-' (6) 

where T-' is defined so that 

A* ( T 6 T - I )  = A* (T%T) = 1 and m ( T 6 T - ' )  = m (T - '6T)  = 1. 

For the sake of clarity let us consider the explicit example of a compact Lie algebra g 
with corresponding Lie group G and representative functions Fun (G). If Xk, (k = 1, . . . n) ,  
are the generators of the Lie algebra. a basis of the universal enveloping algebra is 
of the form X A  = XpXF. . . X ? .  The dual elements x A  E Fun (G) are then x A  = 
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x a x m  , .,.. x?/(al!az!' ... a.!).  where (xk. X , )  = Skc. Therefore the universal T matrix 
results In 

T = C  xf '  @ xf' .. . x? @ X? - - exex,  , . , e"'X. 
a,, ! 

L1l all 0" 

It appears that the evaluation of T on an element of the group G reproduces that element 
expressed by means of the exponential mapping between g and G, and therefore in the case 
of Lie groups the universal T matrix can be regarded as a resolution of the identity mapping 
of G into itself. This point of view must be slightly modified in quantization: recalling that 
the evaluation determines a character on the algebra of the representative functions, we see 
that this character reproduces itself when applied to the universal T matrix, despite the fact 
that x A  are now elements of a non-commutative C'-algebra. 

In the standard framework [ 11 the quantum relations are obtained using the matrices 
T @ 1 and 1 @ T .  Accordingly we define 

TI = x A  @ (XA @l) TZ = x B  @ (1 @ X B )  

so that the products T1T2 and TzT1 read 

G T z = A * ( X A @ x B ) @ ( X a @ X g )  TzTt = A * ( x B @ x A ) @ ( X ~ @ X ~ )  

and, as shown before, they can be expressed in the form 

T i T z = x c @ A ( X c )  TzG = x C @ a A ( X c )  

where o ( X  @ Y) = Y @ X .  We then see that when an R-matrix does exist, its defining 
property RAR-l = a A  gives immediately the algebraic relation 

R Ti Tz Tz G R (7) 

which, when represented, reproduces the well known quantization prescription, 121. 
In the next section we briefly summarize the results for the quantum group SU9(2), 

which, up to minor additions on the antipode, are contained in 111. The purpose for doing 
so is two-fold first we find it useful to give a developed example of the way in which 
the universal T matrix works; secondly we want to establish explicit relations that will be 
relevant to discuss the universal T matrix for some inhomogeneous quantum groups that 
are related to SUq(2) and useful for physical applications, namely Hq(l) [5], Eq(2) 161 
and &(l) [7]. These will be presented in subsequent sections where we shall see that 
the T operator, expressed in terms of q-exponentials for SUq(2), in some cases and in an 
appropriate basis is simply given by a product of exponentials. 

2. The universal T matrix for SUq(2) 

Starting from the usual generators J+, J- and J3 of SU9(2) we define 

E = eZJ3lz J + F = e-rJ312 J- 
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that satisfy the commutation relations 

The coproduct and antipodes now have the form 

A E  = 1@ E + E%eZJ3 A F  =e l J3  F +  F @  1 A 4  = l @ J 3  + J3 @1 
(8) S(E) = -e-zh E S(F) = -ezh F S(J3) ='-53. 

In order to find the T operator we must determine the dual Fun, (SU(2)). We thus 
begin by defining the elements @, y, q dual to the generators E, F, J3 satisfying 

define a basis of Uq(su(2)). A direct verification shows that the corresponding dual basis 
in Fun, (SU(2)) is given by 
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Indeed, if for any element 5 E 
Fun, (SU(2)) we resume the initial notations 5’ = 5 @ 1, 5’‘ = 1 @ 5 and we rewrite 
(1 1) accordingly, we get the suggestive result 

The content of (5) can .now be made explicit. 

e~’@h e ~ “ @ h  .?‘E) = q*(+)@Fem*(~)@& eF;(?)@E = 

- - e(+‘+e-Y‘12+r(l+n‘Q’’)-’ e d b F  e(y’+y”-2 xn(- n’+‘”,” / ( I - e - V W  
L 

(i4) 
(d+e-””/li(l+n’~,)-~?‘ e-Y”n)& 

x ecZ 

Obviously, in the limit z -+ 0 we recover the exponential mapping and the Lie group 
multiplication. Moreover (14) gives a very neat example of the conditions posed by the 
Friedrichs theorem [SI: indeed the non-commutativity of Fun, (SU(2))  and the presence 
of non-standard exponentials is needed to compensate the fact that the generators of the 
quantum algebra are no longer primitive. Additional peculiarities are also connected with 
the antipode, but we shall present them for the Heisenberg quantum group with the explicit 
calculations, which, in that case, are much simpler. We finally observe that the expression 
for m*(y) depends on z and that the l i t  z --t 0 gives the classical composition law 

lim m*(y)  = 1 @Y + Y @ 1+21og(l@ 1+ q@$) 
Z - r O  

3. The exponential mapping for H,(l) 

In [5] a quantum deformation of the Heisenberg group has been determined. With a slight 
change in the definitions with respect to [5] the commutation relations of the generators a-, 
a+ and H of the quantum Heisenberg algebra can be written in the form 

sinh(w H) 
[a-, a+]= [H, . ] = O .  

W 

The corresponding coproducts read 

A&) = 1 @a-  +a- @ ewH A(a+) = e-wH @a+ +a+ @ 1 

H being primitive, while the antipodes are 

s(a-) = -ewH a- S(a+) = -e-wH a+ S ( H )  = -H 

In order to determine the dual structure Fun, ( H ( 1 ) )  we consider the generators a, p, 6 
satisfying (a, a-) = 1 (p, H) = 1 (6 ,  a+) = 1 with commutation relations, coproducts and 
antipodes given by: 

[a,61=0 [B,aI= - w a  [/3,61= -ws 

m * ( 4  = a @ 1 + 18 a 

m*@) = 6 @ 1 + 1 8  6 

S*(Ol) = -a 

m*(p) = p 1 + 18 p +a @ 6  
(15) 

S*@) = -p + as S*(6) = -6. 
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A direct calculation shows that (6" jP ole, a$  ea!) = a !  
matrix results in 

b! abc c !  8,. so that the T 

T = @@H ea@a- . 
Unlike the case of SU&) and similarly to what occurs for Lie algebras, the universal T 

matrix is now expressed in terms of simple exponentials: however, as already observed at 
the end of the previous section, the non-primitive nature of the quantum generators a-, a+ 
and H must be compensated by the non-vanishing commutators of the C*-algebra elements 
6, (Y and ,5 in order to reproduce the same 'group composition' of the coordinates as given 
in (15). Let us also show directly that the inverse of the universal T mabix cannot be 
expressed in terms of exponentials of the antipodes: indeed, from (6), 

1 1 1 
a !  b! c! C! b! a !  

@ a f ; H b a t  =-S*(or)'-S*(B)b-S*(S)n€3a:Hbaf 

If we re-order the terms in this expressions to reconstruct an exponential series, we find 

T-I = e-a@e -B@H -S@o+ e e 

namely the obvious expression that, however, does not have the chosen ordering of the three 
exponential factors: this, indeed, is related to the deep question of what should be taken as 
a quantum analogue of the classical Baker-Campbell-Hausdorff formula [lo]. 

It was shown in [5] that the results for H,(l) can be obtained by contracting the quantum 
algebra SU,(2). It is interesting to observe that this procedure also holds at the level of 
the quantum group Fun, (SU(2)) and therefore the T matrix itself can be obtained by 
contraction. Indeed, the rescaling a- = e'/' E ,  a+ = F, H = e2J3, with w = d z j 2  
reproduces, in the limit e + 0 the quantum algebra H,(l). In order to maintain the pairing 
relations (9) we have to define (Y = &-'/'q, ,9 = E-' y / 2  and 6 = E-'/'& the relations 
of Fun, ( H ( 1 ) )  are simply obtained by using this rescaling on Fun, (SU(2)) and taking 
e -+ 0. The T matrix for Hq(l) is then calculated from that of SUq(2) by taking the limit 
E -+ 0 because of this l i t  it is clear that the q-exponentials become usual exponentials. 

4. The case of Euclidean and Galilei quantum groups 

In this last section we shall determine the T matrices for two inhomogeneous quantum 
groups, the Euclidean quantum group E$) and the Galilei r,(l). 

The quantizations of E(2)  have been thoroughly discussed in 191. Here we shall be 
concemed with that quantum deformation, initially found in [6],  which can very simply be 
obtained by a contraction of the SUq(2) algebra, rescaling the generators as 

P+ = E  J+ P- = E  J- J = 53 

and taking the limit E -+ 0. 
If we define the new basis (b-, J ,  b+), with 

b- = P- = EF b+ = eZJ/' P+ = & E  
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and denote by (n-, n, n+) the dual basis of (b-, J ,  b+), the relations 

( E - ,  b-) = 1 = (z-, E F )  = ( E X - ,  F) (x, J )  = 1 = (x, J3) 

(n+. b+) = 1 = (X+. E E )  = ( E X + ,  E )  . , 

imply that n- =~ e-' 4, JC = y.  n+ = .F1 17 . where (4, y. q )  have been introduced 
in section 2. By means of these rescalings we can directly contract the relations of 
Fun, (SU(2) )  obtaining 

[n-, n+] = 0 [n, n-] = --I n- [R, n+l = -2 n+ . (16) 

Let us notice that the algebra relations in (IO), (15) and (16) all have the same structure. 
In the limit E + 0 the coproducts read 

m*(n-) = a-@l+e-"@n- m*(n) = l@n+n@l m*(x+) = 18Jr++n+@e-" 

and the antipodes 

S*(n-) = - e X x  S*(a) = -H S*(n+) =~-n+e". 

It is not difficult to show that this structure is equivalent to the one found in [4,9,1 I]. It 
allows, however, a very plain determination of the universal T matrix. Indeed, contracting 
the expression (13) we find 

(17) T = eii.@b. en@J x+@b+ e--2 . 
Using the fact that 

A B - A+B if AB = e - ~ ~ ~  e, e, - ez 
all the properties of T can be directly verified. 

Let us finally analyse the results for the deformation of the one-dimensional Galilei 
group, r,(l), which, as shown in [7], has remarkable physical applications since it describes 
the dynamical symmetries of magnon systems on a linear lattice. Contrary to what occurs 
for E,(2), the quantum group r,(l) cannot be obtained from a contraction: therefore, in 
order to find the expression for the T matrix we have to determine the explicit duality 
relations. 

The Hopf algebra of rq(l), [7], is defined by the commutation relations 

[B, PI = iM [ B .  TI = i/a sin(aP) [P, TI = 0 [ M .  = 0 

with coproducts, antipodes and co-units 

A B  = e-i0p @ B + B @ eiap 

A P  = I @  P +  P 8 1  

A M  = e-iaP @ M + B @ S U P  

A T  = l@ T + T  €31 

S ( T )  = -T S(B) = -B - a M  S ( P )  = - P  S ( M )  = - M .  

If we define the pairing 

( p , m )  = ( x .  P )  = ( t , T )  = (IJ,~) = 1 
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where m = e-'"'M and b = einPB, we get the relations for Fun, (r(1)) 

[U, XI = 2iuu 

while the coproducts, antipodes and co-units are as in the Lie case, namely 

Au = 1 @ u + u @ 1 

Af = 1 @ r  + t  @ 1 

Defining the basis of r,(l) as Xobcd = maPbTCbd the dual basis of Fun, (r(1)) is 
(p'xbrcvd)/(a ! b ! c ! d  !), so that, as for the Heisenberg group, the universal T matrix 
is given in terms of simple exponential series 

[ U ,  p] = -uu2 [ x .  p] = -2iup [ t .  .I = o 

Ap = 1 8  p + p@ 1 + iu @ x  - l / 2 u 2 @  t 

Ax = 1 @ x  + n  @ 1 + i u  @ f  . 

To conclude, we can mention that universal T matrices for other inhomogeneous 
quantum groups, such as the singular deformation of E(2), [9], or the three-dimensional 
Euclidean group, (51, can be obtained along the same lines. Obviously, in the presence of 
an R-matrix, the duality relations are more easily determined. This is, for instance, the case 
of Fun, (E(3)), whose relationst, in the notations of [5], 

[ z , X l  = -wX 

[e, zI = w sine 

[e, 21 = w sin0 tan(8/2) [jj,?] = wj; tan(e/2) 

[ j ; ,  zl = wj; [U, j j ]  = -2w tan(el2) 

are defined in terms of (7). 

5. Concluding remarks 

Starting from the definition of the universal T matrix given in [4], we have stressed its 
direct connection with the exponential mapping for Lie groups. The T matrix collects both 
the structure of the quantum algebra and of its dual and allows an algebraic formulation of 
the standard 'RTT' relations. Its expression in terms of q-exponentials, as already given in 
[l], is found to reduce to the usual exponentials for those inhomogeneous groups for which 
the quantum parameter can be reabsorbed by a new definition of the generators of the 
quantum algebra [5,9]: when this occurs, as for Et(2) and I',(l), the parameter acquires a 
physical dimension and is naturally interpreted as a lattice spacing. Therefore, the universal 
T matrix, regarded in [4] as the quantum transfer matrix in models of (1 + 1) lattice 
field theory, can also naturally be used for the study of the quantum deformation of group 
properties of physical systems with kinematical symmetries generated by quantum algebras, 
as in the cases of magnons and phonons [7,12]. In this context the explicit structure for 
all the semisimple quantum groups and for the other ones relevant for applications (e.g. 
q-Poincar.4) deserves a careful examination. Moreover, the use of those results in the study 
of non-commutative geometry and q-special function should also be relevant. 

t Here we take the opportunity of correcting a misprint of [SI. 
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